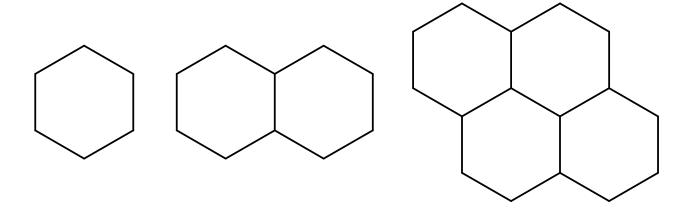
Циклические углеводороды

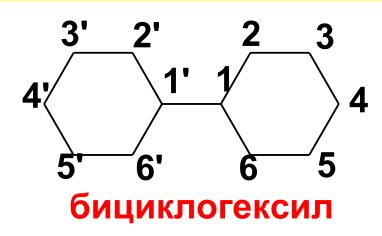
АЛИФАТИЧЕСКИЕ циклические УГЛЕВОДОРОДЫ (Циклоалканы)

• Общая формула

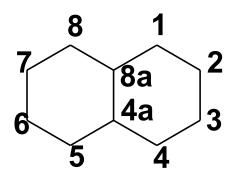

 C_nH_{2n}

Классификация:

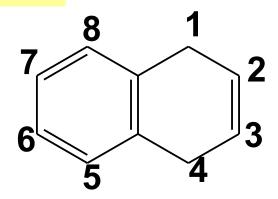
1) По числу атомов углерода в цикле:
 3, 4, 5 и т.д.



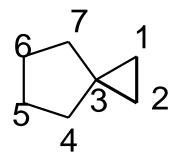
•2) По количеству циклов: моно-, би-, три- и полициклические


3) по наличию общих атомов в циклах:

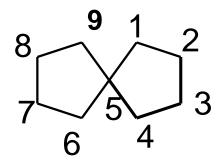
а) с изолированными циклами:



б) конденсированные

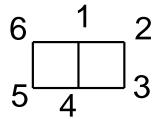


декагидронафталин пергидронафталин

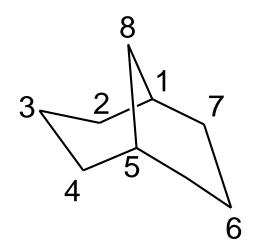


1, 4-дигидронафталин

Бициклические углеводороды следует различать по способу (аннелирования) соединения циклов. Если два цикла имеют общий ЛИШЬ один атом углерода, соединения называют спироциклическими. Названия бициклов образуют, таких добавляя приставку «спиро» к соответствующему названию После гомолога алкана. приставки квадратных В скобках указывают две цифры, обозначающие число атомов углерода, расположенных каждую сторону от узлового С-Нумерацию атома. атомов начинают меньшего цикла, номером последним обозначают узловой атом.



спиро[2.4]гептан



спиро[4.4]нонан

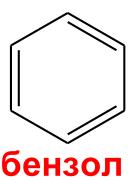
В другом способе аннелирования циклы имеют два общих атома углерода. Это – так называемые мостиковые циклоалканы. Названия таких соединений начинается с указания количества циклов приставками бицикло-, трицикло-, затем указываются три цифры, обозначающие число углеродных атомов каждого мостика, связанного с узловыми атомами. В конце пишется название соответствующего алкана. Нумеруют атомы, начиная с одного узлового и передвигаясь по большему (главному) циклу к другому узловому С-атому. Иногда указывают дополнительные координаты мостика.

бицикло[2.2.0]гексан

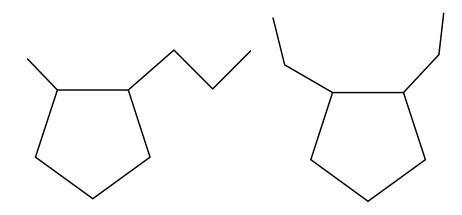
бицикло[3.2.1]октан

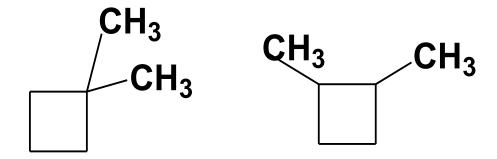
4) По степени ненасыщенности: цикл содержит одну, две или три двойных связи

а) насыщенные



б)ненасыщенные


в) ароматические


Для циклопарафинов, начиная с С₄Н₈, характерны некоторые виды структурной изомерии, связанные:

1) с числом углеродных атомов в кольце — например, (этилциклопропан), (метилциклобутан); чиклопентан метилциклобутан этилциклопропан

2) с числом углеродных атомов в заместителях – (1-метил-2-пропилциклопентан), (1,2-диэтил-циклопентан)

3) с положением заместителя в кольце – (1,1-диметилциклобутан), (1,2-диметилциклобутан)

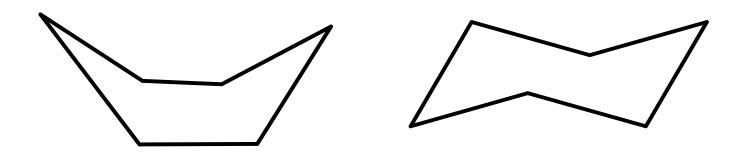
1,1-диметилциклобутан 1,2-диметилциклобутан

4) Изомерией в боковой цепи:

пропилциклогексан изопропилциклогексан

Для циклоалканов характерна также межклассовая изомерия с алкенами

Пространственная изомерия:

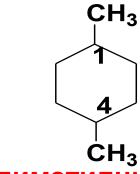

При наличии двух заместителей в кольце у разных углеродных атомов возможна геометрическая цис-транс-изомерия:

<u>цис, транс</u>— изомерия - расположение боковых цепей по одну (*цис*-), или по разные (*транс*-) стороны от плоскости цикла

H₃C CH₃

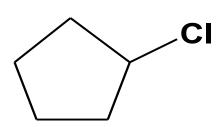
*цис-1,2*диметилциклопропан СН₃
Н₃С *транс-1,2-*диметилциклопропан

конформационная – для неплоских циклов: циклобутан и выше

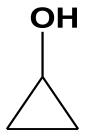


Начиная с C_5H_{10} , - оптическая изомерия. Оптическая изомерия проявляется в том случае, если молекула не имеет плоскости симметрии.

Моноциклические алканы Номенклатура


• Систематическая ИЮПАК: приставка цикло-

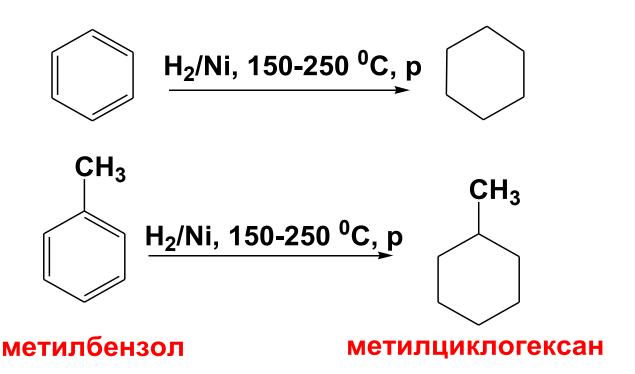
1,2-диметилциклогексан



1,4-диметилциклогексан

Рациональная

циклопент*ил*хлорид



циклопроп*ил*овый спирт

Способы получения:

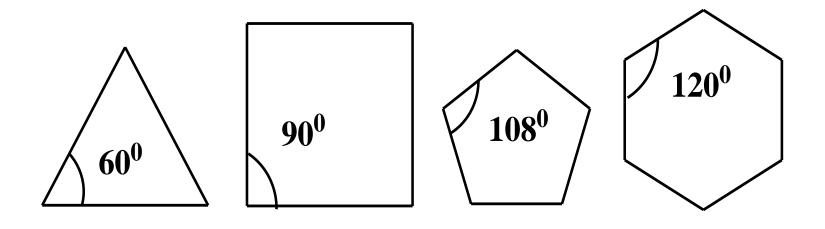
Циклоалканы содержатся в значительных количествах в нефтях некоторых месторождений (отсюда произошло одно из их названий – нафтены). При переработке нефти выделяют главным образом циклоалканы C₅ H₁₀ – C₇ H₁₄

1) Гидрирование ароматических соединений (используют бензол и его гомологи)

2) Дегалогенирование дигалогеналканов

3-членные циклы получают:

$$+2Na$$
 $+2Na$
 $+2 NaBr$
 $+2 NaBr$

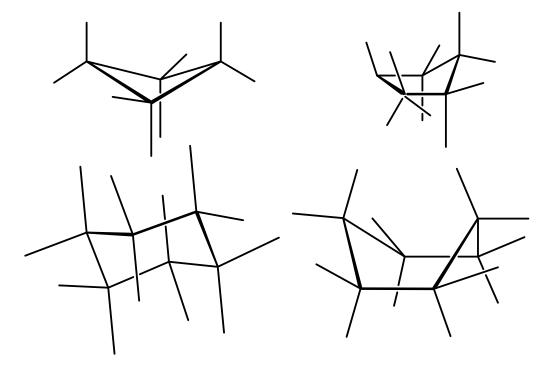

4- и 5-членные циклы получают:

$$H_2C-CH_2Br$$
 H_2C + 2Li/Hg $\xrightarrow{100^0}C$ + 2 LiBr + Hg
 H_2C-CH_2Br

Особенности пространственного строения.

Устойчивость циклов:

• 1) *Байеровское* напряжение как результат отклонение от угла 109°



Для циклопропана межъядерные углы составляют 60°, для циклобутана – 90°, а в циклопентане – 108°. Нормальный валентный угол для атома С – 109,5°. Поэтому при расположении в этих соединениях всех атомов углерода в одной плоскости уменьшение валентных углов составляет в циклопропане – 49,5°, в циклобутане – 19,5°, в циклопентане – 1,5°.

Чем больше отклонение валентного угла от нормального, тем более напряжены и, следовательно, непрочны циклы. Однако в отличие от циклопропана циклобутан и циклопентан имеют неплоские циклы. Один из атомов углерода непрерывно выходит из плоскости.

Циклобутан существует в виде неплоских «сложенных» конформаций. Циклопентан характеризуется конформацией «конверт», циклогексан – конформации кресла или ванны. Таким образом, обсуждаемые циклы находятся в колебательном движении, приводящем к уменьшению «заслоненности» атомов водорода у соседних углеродных атомов и снижению

напряжения.

Физические свойства

Физические свойства циклоалканов закономерно изменяются с ростом их молекулярной массы. При нормальных условиях циклопропан и циклобутан – газы, циклоалканы С₅H₁₀ – С₁₆H₃₂ – жидкости, начиная с С₁₇Н₃₄, – твердые вещества. Температуры кипения циклоалканов выше, чем у соответвующих алканов. Это связано с более плотной упаковкой и более сильными межмолекулярными взаимодействиями циклических структур.

Химические свойства циклоалканов

Химические свойства циклоалканов сильно зависят от размера цикла, определяющего его устойчивость. **Трех- и четырехчленные циклы (***малые* циклы), являясь насыщенными, тем не менее, резко отличаются от всех остальных предельных углеводородов. Валентные углы в циклопропане и циклобутане значительно меньше нормального тетраэдрического и это приводит к большой напряженности таких циклов и их стремлению к раскрытию под действием реагентов.

Химические свойства циклоалканов

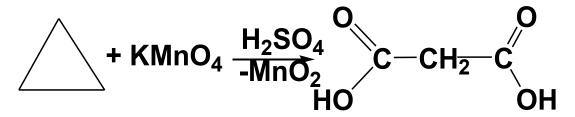
Поэтому циклопропан, циклобутан и их производные вступают в реакции присоединения, проявляя характер ненасыщенных соединений. Легкость реакций присоединения уменьшается с уменьшением напряженности цикла в ряду:

циклопропан > циклобутан >> циклопентан.

В других циклах (начиная с С₅) угловое напряжение снимается благодаря неплоскому строению молекул. Наиболее устойчивыми являются 6-членные циклы, в которых отсутствуют угловое и другие виды напряжения.

Поэтому для циклоалканов (С₅ и выше) вследствие их устойчивости характерны реакции, в которых сохраняется циклическая структура, т.е. реакции замещения.

Химические свойства циклоалканов


1. Присоединение водорода и дегидрирование

2. Галогенирование ($A_E \ u \ S_R$)

3. Присоединение галогеноводородов (идет по правилу Марковникова)

4. Мягкое окисление – реакция Вагнера (идет только с 3-членными циклами)

5. Жесткое окисление

пропандиовая кислота

$$+ \text{KMnO}_4$$
 $\frac{\text{H}_2\text{SO}_4}{-\text{MnO}_2}$ HO OH

пентандиовая кислота (глутаровая)

гександиовая кислота (адипиновая)

Применение

Наибольшее практическое значение имеют циклогексан, этилциклогексан. Циклогексан используется для получения циклогексанола, циклогексанона, адипиновой кислоты, капролактама, а также в качестве растворителя. Циклопропан используется в медицинской практике в качестве ингаляционного анестезирующего средства.